
Running head:  

CAUSAL INFERENCE AND THE HECKMAN MODEL 

 

 

 

 

Causal Inference and the Heckman Model 

 

Derek C. Briggs 

University of Colorado, Boulder 

 
 

derek.briggs@colorado.edu 
 

 

Pre-print of paper published in the Journal of Educational and Behavioral Statistics, 

Winter 2004, Vol 29(4), 397-420. 

 

 
 
 
 
 
 
 
 
 
 
Author’s note: 
 
Thanks to David Freedman for his helpful comments on earlier versions of this paper.   

 

bartone
Text Box
Briggs, D. C. (2004). Casual Inference and the Heckman Model. Journal of Educational and Behavioral Statistics, 29(4), 397-420. Posted with the permission of the publisher. Copyright 2004 by SAGE Publications.



Causal Inference and the Heckman Model 

2 

 

Abstract 

 

In the social sciences, evaluating the effectiveness of a program or intervention 

often leads researchers to draw causal inferences from observational research designs. 

Bias in estimated causal effects becomes an obvious problem in such settings. I present 

the Heckman Model as an approach sometimes applied to observational data for the 

purpose of estimating an unbiased causal effect. I show how the Heckman Model can be 

used to correct for the problem of selection bias, and discuss in some detail the 

assumptions necessary before the approach can be used to make causal inferences. The 

Heckman Model makes assumptions about the relationship between two equations in an 

underlying behavioral model: a response schedule and a selection function. I show that 

the Heckman Model is particularly sensitive to the choice of variables included in the 

selection function. This is demonstrated empirically in the context of estimating the effect 

of commercial coaching programs on the SAT performance of high school students. 

Coaching effects for both sections of the SAT are estimated using data from the National 

Education Longitudinal Study of 1988 (NELS). Small changes in the selection function 

are shown to have a big impact on estimated coaching effects under the Heckman Model.  
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Introduction 

 

A number of statistical methods may be used in observational settings to control 

for bias in the estimation of treatment effects. There is a common thread running through 

such approaches: the idea that an observational study can be considered as a randomized 

experiment, conditional on certain covariates. The approaches differ in the statistical 

assumptions they make and the methods they apply to the data.  In this paper the focus is 

on a method of controlling for bias known as the Heckman Model (Heckman, 1978; 

1979; Heckman & Robb, 1986; Greene, 1993)1. While the Heckman Model is a well-

established approach among econometricians, its use is less common among educational 

statisticians. Much of what follows will serve as a didactic introduction to the Heckman 

Model for the benefit of this latter audience, but more generally, this paper presents the 

assumptions that would be necessary before the Heckman Model could be used to draw 

causal inferences in an observational setting. 

 

To give this presentation an applied context, I use the Heckman Model to evaluate 

the effectiveness of coaching programs in improving performance on the SAT.  The SAT 

is required for admission at almost all competitive four-year colleges in the United States, 

and has a math and verbal section, each scored on a scale that ranges from 200 to 800 

                                                 
1 Three other popular approaches that are sometimes used in this context include the Propensity Matching 

Model (Rosenbaum & Rubin, 1983), two stage least squares (Greene 1993, 603-10), and structural equation 

modeling (Jöreskog & Sörbom, 1996).   
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with standard deviation of about 110 points2. Each year about two million high school 

students take the test at a cost of about $25 each. Coaching for the SAT (and many other 

standardized tests) is a multimillion dollar industry. Companies such as Kaplan and The 

Princeton Review charge roughly $800 for 30-40 hours of instruction, and have attributed 

to their programs average gains of 100-140 points on the combined math and verbal 

sections of the test (Schwartz, 1999). Private tutors, books, videos and computer software 

are also available, at a price, to help students prepare for the test. It has become widely 

accepted among the general public that coaching has a large effect on student scores. Yet 

most of the published research on the topic suggests that the combined coaching effect is 

fairly small, in the range of about 20 to 30 points (cf. Messick, 1980; Messick & 

Jungeblut, 1981; Becker, 1990; Powers, 1993, Powers & Rock, 1999, Briggs, 2001). 

 

One problem for research on SAT coaching has been that coaching effect 

estimates are usually based on studies with observational designs, making causal 

inference about coaching effects equivocal.  There is typically reason to believe that 

coached students self-select themselves on the basis of higher levels of motivation or 

academic ability.  To the extent that such variables are themselves correlated with SAT 

performance, an estimated coaching effect will suffer from selection bias.  When certain 

assumptions hold, the Heckman Model is a statistical approach that could be used in such 

a scenario to estimate an asymptotically unbiased effect of coaching.  I discuss these 

assumptions and the form of the Heckman Model correction in the next section. 

 
                                                 
2 As of 1994, the SAT became the SAT I.  For the sake of consistency, the term SAT is used throughout 

generically to represent a multiple-choice test used for purposes of college admission.  
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The Heckman Model 

 

Consider the following behavioral model for a student taking the SAT: 

 ( )i i if COACH a bCOACH σε= + + +X c  (1) 

 1 0i i iCOACH α δ= ⇔ + + >Z γ . (2) 

The model consists of a response schedule (1) and a selection function (2). In the 

response schedule, a student's potentially observable SAT score is a function of the 

variable COACH. Two different scores are possible for student i, depending on whether 

COACH = 1 or 0. The variable COACH is in theory manipulable—if its value is changed, 

the SAT score subsequently observed for student i will change as well (unless, of course, 

there is no coaching effect). The observed covariates in the vector Xi are fixed 

characteristics of each student—they cannot be manipulated by the researcher. The 

response schedule specified here assumes a linear relationship between the variable 

COACH and the potentially observable SAT score, with a constant effect across 

individuals, represented by the parameter b. Likewise, the effect of Xi is linear, and c is 

the same for all students. The "error" term σεi represents the deviation of student i's SAT 

score from its expected value. In an experimental setting, the observed value of COACH 

for student i would be assigned by the researcher with a known probability. Here, the 

observed value of COACH is assumed to be governed by the selection function, which 

specifies that a student’s decision to be coached is a function of the vector of observable 

covariates, Zi and the latent covariate, δi. 

 
According to the model, observed SAT scores are generated as 

 ( ) ,i i i i i iY f COACH a bCOACH σε= = + + +X c  (3) 
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where COACHi is determined by Equation 2.  Under the Heckman Model, three further 

statistical assumptions must be made: 

i) (εi, δi) are iid in i with a standard normal distribution; 

ii) {Xi: i = 1, ... , N} is independent of {εi: i = 1, ... , N} 

iii) {Zi: i = 1, ... , N} is independent of {δi: i = 1, ... , N} 

 

No restrictions are imposed on the relationship between εi and δi, so the variable 

COACHi may be correlated with the error term εi. This relationship is captured by the 

parameter, ρ which may take on any value between -1 and 1. If ρ ≠ 0, the variable 

COACHi will be endogenous, and the causal parameter b will suffer from selection bias3. 

 

Note that if εi and δi are not correlated, then ρ = 0, and there would be no 

selection bias problem.  Linear regression could be used to estimate an unbiased coaching 

effect.  Intuitively, ρ ≠ 0 will be the case if an unobserved reason why students decide to 

get coached is correlated with an unobserved reason that students perform well on the 

SAT.  For example, suppose students with more "grit" are the ones most likely to get 

coached.  At the same time, suppose students with more "moxie" will perform better on 

the SAT. (I offer no definition of grit and moxie; the two are distinguishable but latent.) 

While use of linear regression to draw causal inferences would require the assumption 

that grit (i.e. δi) and moxie (i.e. εi) are independent, the Heckman Model allows for the 

possibility that they are correlated. 

 

                                                 
3 In this context, the term "selection bias" is being used synonymously with the term "endogeneity bias." 
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Given Equations 1-2 and assumptions i-iii, if ρ ≠ 0 and the parameters a, b and c 

were estimated by regressing Yi on a constant, COACHi and Xi, the estimates would be 

biased. Because ρ ≠ 0, the variable COACHi is endogenous, and ( | , ) 0.i i iE COACHε ≠X   

The Heckman Model strategy is to get an estimate for this term, and then treat it as an 

observable confounder of the relationship between coaching and SAT performance. Let 

( | , )i i i iE COACHλ ε= X . If this value were known for student i, then regressing Yi on a 

constant, COACHi, Xi and λi would produce unbiased parameter estimates for a, b, c and 

h, where h is the regression coefficient associated with λi. Now, 

( | , ) 0.i i i iE COACHε λ− =X   If the assumptions of the Heckman Model are to be 

believed, then selection bias has been purged from the estimate of b. 

 

In practice, λi is not known, but given the assumption that εi and δi have standard 

normal distributions, îλ  can be calculated as a function of the estimated parameters 

ˆ ˆandα γ in the selection function (2). Now, assuming that all confounding in the 

relationship between Yi and COACHi is due to Xi, and all selection bias is due to λ̂ , then 

regressing Yi on a constant, COACHi, Xi and λ̂  will almost control for bias in the 

estimate of b due to both confounding and self-selection. Heckman (1979) has shown that 

b̂  will converge to b asymptotically, so b̂  will be biased but consistent. The details of the 

Heckman Model for the coaching application are sketched out below. 

 

The starting point for the Heckman Model is the selection function describing the 

way students decide whether or not they will seek coaching. The vector Zi contains 

observable covariates related to the probability that a student is coached.  Latent 
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covariates enter the picture through δi. The term δi is cast as an unmeasured latent 

continuous random variable with an assumed standard normal distribution. Student i's 

decision to seek coaching is determined by a linear combination of the measured and 

unmeasured covariates represented by Zi and δi. The selection function specifies that if 

0i iα δ+ + >Z γ , student i will be coached. Otherwise, student i will not be coached. 

Given assumptions i and ii, another way of writing the selection function is 

 
( 1| ) ( 0 | )

( | )
( ),

i i i i i

i i i

i

P COACH P
P
α δ
δ α
α

= = + + >
= − < +
= Φ +

Z Z γ Z
Z γ Z

Z γ
 (4) 

where Φ  represents the standard normal cumulative distribution function. Given all the 

Zi's, the COACHi's are assumed to be independent, so Equation 4 constitutes what is 

known as the probit model. 

 

The Heckman Model goes from specifying a selection function to getting an 

estimate for the bias term, E(εi | Xi, COACHi) by estimating the expected value of a 

truncated normal random variable4.  This estimate is known in the literature as the Mills 

Ratio or Hazzard Function, and can be expressed is the ratio of the standard normal 

density function, ( )tφ , to ( )tΦ :  

 ( )( )
1 ( )

tt
t

φλ =
−Φ

 (5) 

where t is the point at which the distribution has been truncated. When the truncation is 

from above, then by symmetry of the normal distribution, the expected value of the 

random variable will be 

                                                 
4 For details, see Johnson & Kotz, 1970, 112-113 and Greene, 1990, 682-689. 
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 ( )( )
( )
tt
t

φλ = −
Φ

. (6) 

 

The goal is to estimate a value for the bias term E(εi | Xi, COACHi) for student i. 

Fix a value xi for Xi. The selection bias term can be decomposed into two parts 

( | , 1)i i i iE COACHε = =X x  and ( | , 0)i i i iE COACHε = =X x . Given the underlying 

behavioral model (Equations 1 and 2), and the condition that COACHi = 1, it follows that 

δi no longer has a normal distribution, but a truncated normal distribution. The 

conditional expectation of δi will be ( | 0)i i iE δ α δ+ + >Z γ . Similarly, under the 

condition that COACHi = 0, it follows that δi again has a conditionally truncated 

distribution—this time the truncation is from above. Now the conditional expectation of 

δi is ( | 0)i i iE δ α δ+ + ≤Z γ . The next step is to compute the conditional expectation of εi, 

given Xi and COACHi. 

 

Under the Heckman Model, εi and δi have correlation ρ. Let ξi be a random 

variable equal to 2( ) 1i iε ρδ ρ− − . It follows from this definition that ξi has an 

expected value of 0 and is independent of δi. Think of ξi as the random variable that picks 

up the variance left unexplained if εi is regressed on δi. Now εi can be related to δi and ξi: 

 21 .i i iε ρδ ρ ξ= + −  (7) 

Let si = + iα Z γ . It follows that 

 
( | , 1) ( | , 0)

( | 0)
( | ).

i i i i i i i i i

i i i

i i i

E COACH E s
E s
E s

ε ε δ
ρ δ δ
ρ δ δ

= = = = + >
= + >
= > −

X x X x
 (8) 
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Note that ξi drops out of the equation because its conditional expectation is 0 by 

definition. The task is to evaluate the conditional expectation on the right side of (8). 

Taking advantage of the symmetry of the normal distribution leads to the Inverse Mills 

Ratio, 

 ( )( | ) .
1 ( )

i
i i i

i

sE s
s

φδ δ > − =
−Φ

 (9) 

Likewise, 

 
( | , 0) ( | , 0)

( | 0)
( | ).

i i i i i i i i i

i i i

i i i

E COACH E s
E s
E s

ε ε δ
ρ δ δ
ρ δ δ

= = = = + ≤
= + ≤
= ≤ −

X x X x
 (10) 

This again yields the Inverse Mills Ratio 

 ( )( | ) .
( )

i
i i i

i

sE s
s

φδ δ ≤ − = −
Φ

 (11) 

It follows from (7-11) that 

 ( | , )= ( , )i i i i i iE COACH COACH sε ρλX , (12) 

where 

 ( ) ( )( , ) (1 )
1 ( ) ( )

i i
i i i i i

i i

s sCOACH s COACH COACH
s s

φ φλ
⎛ ⎞ −

= + −⎜ ⎟−Φ Φ⎝ ⎠
. (13) 

( , )i i iCOACH sλ  is a specific value for student i. While ( , )i i iCOACH sλ  is not directly 

observable, it is estimable given the assumptions of the Heckman Model. The 

variable ˆ( , )i i iCOACH sλ  can be computed after estimating parameter values for α  and γ 

in the probit model of (4) via maximum likelihood. 

 

 The behavioral model of (1) and (2) now leads to 
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 *ˆ( , )i i i i i i iY a bCOACH h COACH sλ ε= + + + +X c  (14) 

where * ˆ( , )i i i i ih COACH sε σε λ= − . The causal parameter of interest is still b. The 

parameter h associated with ˆ( , )i i iCOACH sλ  in Equation 14 is equal to σρ. Consistent 

estimates for b and h will be obtained by regressing Yi on a constant, COACHi, Xi and 

ˆ( , )i i iCOACH sλ . Note that while it is ˆσ̂ρ  that is estimated by ĥ , if an estimate for ρ̂  is 

desired, it can be obtained by dividing ĥ  by σ̂ , where σ̂  is estimated as a function of 

residuals from the regression equation. Because the conditional variance of *
iε  depends 

on Zi, a regression fit by OLS will be heteroskedastic. Estimates for a, b, c and h will be 

consistent, but inefficient. The standard errors estimated using OLS will be incorrect. A 

regression fit by Generalized Least Squares (GLS) will solve the latter problem (Greene, 

1981). If the GLS estimate for h is statistically significant, this suggests that had b been 

estimated directly using linear regression without the Heckman correction, the estimate 

would have contained selection bias. 

 

Note that ˆ( , )i i iCOACH sλ  essentially adds an interaction term consisting of 

COACHi and the Inverse Mills Ratio to the main effect for COACHi in the regression 

equation. The difference in expected SAT scores between coached and uncoached 

students will be 
ˆ ˆ( )ˆ ˆ .

ˆ ˆ ˆ ˆ( )(1 ( ))
i i

i i i i

b h φ α
α α

⎡ ⎤+
+ ⎢ ⎥Φ + −Φ +⎣ ⎦

X γ
X γ X γ

  The effect of coaching estimated 

by regressing Yi on a constant, COACHi, Xi without the Heckman Model correction is the 

combination of these two terms: the main coaching effect and the coaching by Inverse 

Mills Ratio interaction. The term in brackets will always be positive. The estimate ĥ  has 
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been defined as the product of σ̂  and ρ̂ . Since σ̂  is always positive, if ρ̂  is positive, 

this suggests that the coaching effect estimated without the Heckman Model correction 

would be biased upwards. If ρ̂  is negative, it suggests that the coaching effect estimate 

without the Heckman Model correction would be biased downwards. 

 

To summarize, the Heckman Model as applied to coaching studies has two main 

steps5.  

1. Specify a selection function for coaching status and estimate the parameters using 

maximum likelihood. Use these estimated parameters, and the assumed normal 

distributions of the response schedule and the selection function to compute the 

Inverse Mills Ratio when COACHi  = 1 and when COACHi  = 0. 

2. Include ˆ( , )i i iCOACH sλ  in a linear regression equation as a covariate. Estimate 

the coaching effect, b̂ and the selection bias parameter, ĥ (i.e. ˆσ̂ρ ) using OLS or 

GLS.  

 

The Heckman Model in Practice 

 

As presented here, the Heckman Model assumes that the functional form of the 

causal relationship between outcome, treatment and covariates is linear. In the context of 

observational studies where the coaching variable is dichotomous, the linearity 

assumption is violated if some or all of the covariates in Xi have a nonlinear relationship 

                                                 
5 The Heckman Model can also be implemented as a one-step approach when estimation is done by 

maximum likelihood, but the two-step approach is more common in the applied literature (Vella, 1998). 
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with Yi. If the linearity assumption is incorrect, a coaching effect will be estimated as the 

difference between the wrong two regression surfaces. A constancy constraint, i.e. 

 = ib b , is also typically stipulated, such that person i = 1, ... , N is affected by the 

treatment in the same way. The constancy constraint is violated, for example, when 

certain types of students benefit significantly more or less from coaching. Indeed, 

interaction effects between coaching and student characteristics have been analyzed from 

the very earliest coaching study by Dyer (1953) to the more recent study by Briggs 

(2001). If the constancy constraint is wrong, then causal inferences about "the" coaching 

effect may be misleading. Parametric assumptions such as linearity and constancy have 

been discussed in more detail in the context of an alternative approach to causal inference 

in observational settings known as the Propensity Matching Model. For details, see 

Rosenbaum & Rubin, 1983; 1984 and Rosenbaum, 2002. 

 

Because of the strong assumptions that underlie the Heckman Model, its 

usefulness has been questioned by some statisticians (Wainer, 1986; Little, 1985) and 

econometricians (Goldberger, 1983). In one unusual case (Lalonde, 1986), the causal 

estimates from a Heckman Model were put to the empirical test—and the results were not 

encouraging. Lalonde gained access to data from a federally randomized experiment 

conducted to determine the average effect of a job training program. The effect was 

estimated by comparing the post-treatment incomes of subjects in an experimental 

treatment group to the post-treatment incomes of an experimental control group. Based 

on the findings from the randomized experiment, the average effect of the program 

appeared to be a little over $800, with a standard error of about $300. Lalonde attempted 

to recreate these results by substituting non-experimental control groups for the 
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experimental control, and using a Heckman Model with different specifications of the 

selection function to approximate the result of the randomized experiment. The results 

showed that when using four different selection function specifications while holding 

constant gender and type of non-experimental control group, the estimated effect of the 

program varied from $10 to $670, and in few cases was the estimated effect within a 

standard error of the experimental estimate. Lalonde did not however, conclude that the 

Heckman Model's apparent sensitivity to alternate selection function specifications 

threatened the usefulness of the model, nor did he speculate as to what drove this 

sensitivity. 

 

Powers & Rock (1999) employed both linear regression and the Heckman Model 

to estimate a causal effect for SAT coaching in an observational setting. The findings 

from this study were that the two approaches produced relatively similar estimates of 

coaching effects, and that neither approach produced effect estimates considerably 

different from a baseline comparison with only pre-treatment test scores as covariates. In 

a footnote Powers & Rock reported that their Heckman Model estimates had been 

sensitive to specifications of the selection function, but no details were provided. 

 

The relationship between the specification of the selection function and 

subsequent effect estimates would seem to merit closer attention, because as a procedure, 

the Heckman Model offers no guidance as to the covariates that should be included in its 

selection function. It is only assumed that {Zi: i = 1, ... , n} is independent of {δi: i = 1, ... 

,n}. As a matter of identifiability, it does not matter whether the covariates in the 

selection function are different from those in the response schedule. The Inverse Mills 



Causal Inference and the Heckman Model 

15 

Ratio is identified through its nonlinear relationship to Xi. In some illustrations of the 

Heckman Model, it has been suggested that the covariates in the selection function should 

contain one or more variables related to the probability of treatment selection, but 

excluded from outcome prediction (e.g. Lalonde, 1986; Greene, 1993). In other 

illustrations, only covariates excluded from outcome prediction have been included in the 

selection function (e.g. Statacorp, 2001). In either case, it is typically assumed that the 

additional variables included in the selection function are strong predictors of treatment 

assignment, yet uncorrelated with the outcome of interest. These are known as 

instrumental variables in the econometric literature. 

 

In the context of SAT coaching, an ideal instance of an instrumental variable 

would occur if participation in coaching programs was assigned to interested students 

using a lottery system. One could imagine some sample of students in which each student 

was given a randomly generated number. Subsequently, a researcher would decide, based 

on some cutoff value, whether each student would be assigned to a coaching program or 

not. The value of the random number generator would be perfectly correlated with 

coaching assignment, but presumably uncorrelated with SAT performance. Specifying a 

selection function for use in a Heckman Model would seem quite credible in this 

instance. 

 

As in the case above, the ideal choice of covariates to include in the selection 

function should be based on some theoretical understanding of the selection mechanism. 

Of course, observational studies seldom present the researcher with this sort of scenario. 
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The NELS Data 

 

The National Education Longitudinal Study of 1988 (NELS:88, hereafter referred 

to as “NELS”) tracks a nationally representative sample of American students from the 

8th grade through high school and beyond. The NELS data can be used for an 

observational evaluation of coaching effectiveness because it contains SAT scores and 

information about how students prepared for the SAT. A panel of nearly 15,000 students 

completed survey questionnaires in the second two waves of NELS in 1990 and 1992. 

One of these questions asked students to select from a range of options describing how 

they had prepared to take the SAT. In addition to student questionnaire responses, high 

school transcripts were collected. Each transcript included information on student grades, 

course taking patterns, school demographics, and college admission test scores.  

 

For the analysis that follows, attention is focused on the NELS panel sample of 

students who completed surveys in the first (F1) and second (F2) follow-ups, and for 

whom transcript data was collected. This comprises an F1-F2 panel of 14,617 students.  

The emphasis in most SAT coaching studies has been on students who have taken the 

SAT and for whom there is a prior SAT or PSAT score available before a test preparation 

treatment has been introduced. I similarly restrict attention to the 3,504 students from the 

NELS subsample who took both the PSAT and SAT, were members of the 10th grade and 

12th grade cohorts as of the NELS F1 and F2 surveys, and indicated whether or not they 

had been coached as a means of preparing for the SAT.  
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The NELS Variables 

 

To estimate a coaching effect from the NELS data using the Heckman Model 

requires three types of variables: an outcome variable (Y), a coaching variable (COACH), 

and covariates to be included in X and Z. I briefly describe each in turn. 

 

Math and Verbal SAT Scores 

 

The outcome variable of interest is a score on either the math or verbal section of 

the SAT. As of the early 1990's, the SAT was a timed multiple choice test lasting for a 

total of two and a half hours. The test was then, and is now, intended to measure the 

constructs of mathematical and verbal reasoning, with scores from two different test 

sections. Each score was based on student responses to about 85 verbal items and 60 

math items on the SAT. Because this is a relatively large number of items, and the items 

are chosen with great care, the SAT has the desirable technical feature of high internal 

consistency. The reliability of SAT math and verbal scores using Cronbach's Alpha is 

about .9, and the standard error of measurement for each test section is usually about 30 

points. The mean and standard deviation of SAT-V scores (446 and 102) for the NELS 

subsample are both slightly lower than the mean and standard deviation of SAT-M scores 

(501 and 117).8  The mean scores for all college-bound seniors taking the test in 1991-92 

                                                 
8 That mean SAT-V scores are higher than mean SAT-M scores is an artifact of the original samples used 

to create the original SAT score scales.  The SAT scale was recentered as of 1995 (see Dorans, 2002 for 

details).  Historical tables with mean SAT scores are now expressed in this metric.  The mean scores for the 

NELS POP1 subsample correspond to recentered scores of 543 on the SAT-V and 524 on the SAT-M.   
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was about 423 on the SAT-V, and 475 on the SAT-M. The mean SAT scores for the 

NELS subsample are slightly higher than those of the national population of test-takers 

because they are restricted to those students who had previously taken the PSAT.   

 

The Coaching Variable 

 

The treatment variable of interest is whether or not students have been coached 

before taking the SAT. The NELS F2 questionnaire asked students a targeted question 

about their test preparation activities. This question is replicated verbatim below. 

 
To prepare for the SAT and/or ACT, did you do any of the following? 

 A Take a special course at your high school 
 B Take a course offered by a commercial test preparation service 
 C Receive private one-to-one tutoring 
 D Study from test preparation books 
 E Use a test preparation video tape 
 F Use a test preparation computer program 

 

With the exception of studying with a book, all of the methods listed above to prepare for 

the SAT have been classified as coaching in previous studies. In this analysis, students 

are classified as having been coached if they have enrolled in a commercial test 

preparation course. For a student answering question B above with a "yes", the dummy 

variable COACH is coded with a 1. For students answering with a "no", COACH is coded 

with a 0. The distinction made here is whether a test-taker has received systematic 

instruction over a short period of time. Preparation with books, videos and computers are 

excluded from the coaching definition because while the instruction may be systematic, it 

has no time constraint. Preparation with a tutor is excluded because while it may have a 
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time constraint, it is difficult to tell if the instruction has been systematic. This definition6 

of the term is consistent with that used by Powers & Rock (1999), and this makes the 

coaching effect estimates generated from the NELS data somewhat more comparable 

those generated from the nationally representative data in the Powers & Rock study. 

Also, commercial coaching is the most controversial means of test preparation, because it 

is costly, widely available, and comes with published claims as to its efficacy. About 

15% of the students in the NELS subsample indicated that they had taken a commercial 

course to prepare for the SAT.  

 

Covariates 

 

Insert Table 1 about here 

 

To control for confounding in the estimation of coaching effects, an appropriate 

set of covariates must be chosen for Xi. The choice of covariates can be guided to a great 

extent by previous investigations of coaching effectiveness. A review of the research 

literature on SAT coaching (see Briggs, 2002) indicates that previous SAT or PSAT 

scores, demographic characteristics, academic background and student motivation may 

serve to confound coaching effect estimates. These variables, and their relationship to 

coaching status, are shown in Table 1.  Student motivation can be further divided into 

variables that proxy for intrinsic motivation (e.g. self-esteem) and extrinsic motivation 

(e.g. parental pressure). The latter variables may predict whether students are likely to be 

                                                 
6 Other ways of defining the coaching treatment with respect to the NELS prompt on test preparation 
activities are certainly possible.  Many of these are described and analyzed in Briggs (2004). 
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coached, but are unlikely to have a direct influence on how students will perform on the 

SAT. Variables measuring extrinsic motivation, shown separately in Table 2, might be 

particularly attractive candidates to include within the matrix Z for a coaching selection 

function.  

 

Insert Table 2 about here 

 

When coached and uncoached students are compared along these sets of 

covariates in the NELS data, it appears that the coached group is more socioeconomically 

advantaged and more extrinsically motivated to take the SAT then uncoached 

counterparts. It does not appear that the coached group is necessarily comprised of 

academically “smarter” or more intrinsically motivated students—both groups are 

enrolled in college-preparatory classes, both performed about the same on NELS 

standardized tests in reading and math, both report having comparable levels of self-

esteem, and both report that they do about the same amount of homework per week. 

 

Coaching Effects and the Heckman Model 

 

I start by specifying all covariates with a theoretical relationship to coaching 

status and SAT performance in the underlying behavioral model described by equations 1 

and 2. There are a total of 21 covariates in the vector Xi. 

 

• Pre-coaching SAT scores: (PSAT-V and PSAT-M). 
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• Demographic characteristics7: AGE, SES, FEMALE, ASIAN, BLACK, HISPANIC, 

AM_INDIAN, PRIVATE, SCH_URB, and SCH_RUR. 

• Academic background8: AP , RE_MATH, RE_ENG; RIGHSP, F1MATH, 

F1READ, MTHCRD, and MTHGRD. 

• Intrinsic student motivation: F1ESTEEM, F1LOCUS and HOMEWORK. 

 

Note that in specifying the set of covariates to include in Xi, a commitment is 

made to the sort of causal relationship shown in Equations 1 and 2.  That is, I assume 

there is no confounding of the relationship between SAT performance and coaching 

status beyond that captured by the covariates in Xi.  The only other theoretical source of 

bias in the estimate of the coaching effect comes from the correlation of COACHi with εi.  

The Heckman Model is employed to control for this source of bias  

 

Specifying a Selection Function 

 

In order to estimate an effect for COACH using the Heckman Model, I start by 

specifying a selection function that, given a set of covariates Zi, predicts whether student 

                                                 
7 The reference categories are WHITE and SCH_SUB for the racial/ethnic and school location dummy 

variables respectively. The SES index was developed as part of the NELS database, and combines 

information about parental education, income and occupation into a single variable.  Generally, students 

with higher SES values come from families with parents that are better educated, wealthier and have jobs in 

more prestigious occupations.  For the NELS subsample considered here, the SES index has a mean of .44, 

a standard deviation of .73, and a range from –2.4 to 2.5.   

8 College preparatory math courses consist of algebra, geometry, trigonometry, pre-calculus and calculus.   
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i will be coached or not. The specification decision hinges upon what covariates are 

included in Zi. Ideally, students in the NELS survey would have been assigned to 

coaching programs by some known process, or at least asked questions about why they 

did or did not enroll in coaching programs, but as NELS was not designed to answer this 

sort of question, such data is not available. In many empirical applications of the 

Heckman Model, the decision of what covariates to include in Zi appears to be largely a 

matter of ensuring that the model is well identified. 

 
Figure 1. Five Selection Function Specification  
 
SF1     Zi = {Xi} 
SF2     Zi = {Xi, PARENTi} 
SF3     Zi = {PARENTi, PPRESSi, HWTUTORi, HI_MOTi} 
SF4     Zi = {SESi, SCH_RURi, REMATHi, MTHCRDi, PPRESSi, HWTUTORi, HI_MOTi} 
SF5     Zi = {AGEi, SESi, SCH_RURi, MTHGRDi, PARENTi, PPRESSi, HWTUTORi, HI_MOTi} 
 

I consider five plausible specifications of a selection function for coaching: SF1, 

SF2, SF3, SF4 and SF5.  The predictors in each specification are listed in Figure 1. 

Which of these is the "right" specification of the selection function?  A reasonable case 

could be made for each of the five. In SF1, all the covariates specified as possible 

confounders in the regression equation are included as predictors in the selection 

function, and this represents the kind of mechanical use of the Heckman Model to be 

expected when the data analyst has no operating theory for how students select 

themselves into coaching. Note that the Heckman Model in this case is identified only by 

the nonlinearity of the selection function. Some have referred to this as "weak" 

identification (Breen, 1996; Vella, 1998). In SF2, one additional predictor, the dummy 

variable PARENT, has been added to the selection function. Now the model is 

overidentified, since PARENT is not a covariate in the response schedule. Here we 
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imagine the data analyst has access to at least one variable thought to predict coaching 

status, but not SAT performance. This is known as a single exclusion restriction. SF2 

doesn't constitute a theory per se, but it is the simplest possible improvement over SF1. 

For SF3, only covariates excluded from Xi in the response schedule (PPRESS, 

HWTUTOR and HI_MOT) are included as predictors in the selection function9. Under 

SF3, there are now four variables thought to predict coaching status, but not SAT 

performance. In addition, the strong and questionable assumption is made that no 

covariates in Xi should be used to predict coaching status. The specification SF3 is meant 

as an extreme contrast with SF1. In SF1, all covariates in Xi are also in Zi; in SF3, no 

covariates10 in Xi are also in Zi. In SF4, all predictors included in the selection function 

are chosen by a stepwise selection algorithm. SF4 is another example of a mechanical 

approach a data analyst might take in specifying the selection function: all possible 

covariates are thrown into an algorithm, and an optimal subset emerges. Finally, for SF5, 

predictors are chosen for two reasons: because they have some theoretical relationship to 

coaching status (SES, PARENT, PPRESS, HWTUTOR, HI_MOT) or because they have an 

empirical relationship to coaching status (AGE, SCH_RUR, MTHGRD). SF5 is an 

approximation of a theory-based specification approach. Here the data analyst has taken 

                                                 
9 Values for the predictors PARENT, PPRESS and HWTUTOR were missing for anywhere from 2 to 10% 

of the NELS subsample of 3,144 students used in the linear regression model.  Missing values for these 

predictors were coded as three unique dummy variables which took the value of 1 if a student's response 

was missing, and 0 otherwise.  For any selection function specification including one or more of these three 

variables, the associated missing value dummy variable MPARENT, MPPRESS or MHWTUTOR was also 

included. 

10 Strictly speaking this is not true since HI_MOT is itself a function of PSAT-V, PSAT-M and MTHGRD. 
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some care in choosing predictors with a hypothesized relationship to coaching status (i.e. 

it is well-established that coaching programs can be expensive, and hence high-SES 

students are more likely to enroll in them). In addition, the data analyst has analyzed the 

pairwise cross-tabulations of all covariates with coaching status, and included three for 

which there was evidence of a statistically significant relationship. SF5 has four 

exclusion restrictions as in SF3, but includes in Zi a subset of covariates from Xi, as in 

SF4. 

 

Table 3 presents the parameter estimates generated from a probit model for each 

of the five SF specifications. It is not at all obvious on statistical grounds that any one of 

the five specifications is the best choice for use in the Heckman Model. Unlike linear 

regression, where model fit is often assessed on the basis of R2, there is no such measure 

of absolute fit for the probit model. When compared using a likelihood ratio (LR) test to a 

baseline specification with just a constant and no predictors, all five SF specifications 

would be considered a statistical improvement. A variant of this approach is represented 

by the "Pseudo R2" values in the third row of Table 3. The Pseudo R2 for each 

specification is calculated as (1− L)/L0, where L is the log likelihood for a given 

specification of the selection function, and L0 is the log likelihood for the baseline 

specification. According to this criterion, the SF4 and SF5 specifications improve model 

fit the best relative to the baseline model, but not by much—all five specifications are 

within about .04 of one another. Of the five specifications, only SF1 and SF2 are nested 

and can be compared directly using a likelihood ratio test. The difference in deviance 

between SF2 and SF1 is 11.7 with an approximate Chi-Square distribution on 2 degrees 
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of freedom. On this basis SF1 can be rejected in favor of SF2, but no LR test can 

recommend SF2 over SF3, SF4 or SF5. 

 

Insert Table 3 about here 

 

Another possible criterion to consider in picking a "best fitting" specification is 

one with the largest proportion of statistically significant probit coefficient estimates. 

This is fairly important, since the next step of the Heckman Model is to calculate an 

Inverse Mills Ratio as a function of the estimated coefficients, whether they are 

significant or not. Naturally, the SF4 specification comes out on top here—all of its 

coefficients are statistically significant, because its predictors were selected with this 

criterion in mind. The SF3 and SF5 specifications are not far behind, with 86% and 72% 

of estimated coefficients statistically significant. SF1 and SF2 are particularly weak 

relative to this criterion, with only 13% and 20% of estimated coefficients statistically 

significant. 

 

For each of the five SF specifications, one can examine the predicted probabilities 

of being coached as a function of selection function covariates. For SF4 and SF5 the 

highest estimated probability is about .2 higher than that estimated under SF1, SF2 and 

SF3. In terms of the actual and predicted number of coached students for each 

specification, all the specifications tend to underpredict the number of coached students. 

None of these models predicts correctly the coaching status for more than about 20% of 

those students who were actually coached. 
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The point of these model comparisons is that in most applications of the Heckman 

Model, precious little ink has been spent validating selection function specifications. 

Seldom are alternate specifications compared, and it is even more seldom that there is 

any theory to bolster the specification ultimately chosen. The decision of what predictors 

to include or exclude from the selection function is a non-trivial one, and can have 

substantial ramifications on the estimated parameters generated by the Heckman Model. 

 

Heckman Model Estimates 

 
The Inverse Mills Ratio, ˆ( , )ik i ikCOACH sλ , can be estimated for the k = 1, ..., 5 

SF specifications. For the second step of the Heckman Model I proceed by including 

ˆ( , )ik i ikCOACH sλ  as a covariate in the regression of Yi on a constant, COACHi, and Xi. 

Each regression is weighted by the variable DESWGT to account for the NELS 

population weights, as well as the design effects caused by the stratification and 

clustering of students in the NELS sample. The clustering of students in the NELS 

subsample amounts to a mean of 4 and a median of 6 students per school—relative to a 

mean and median of 14 for the full F1-F2 panel sample. In the NELS subsample there is 

on average just one coached student per sampled school. Given this, the design effect 

correction of 3 used here will probably overestimate standard errors, and should be 

viewed as a conservative upper bound.  Finally, because the conditional variance of εi 

under the Heckman Model is heteroskedastic, a generalized least squares fitting 

procedure (Greene, 1981) is used to get efficient standard error estimates for the 

regression coefficients. Table 4 reports the results of these regressions for SAT-V and 

SAT-M test scores. 
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Insert Table 4 about here 

 

The estimated effects for COACH vary, sometimes dramatically, depending upon 

which version of ˆ( , )ik i ikCOACH sλ  is included in the Heckman Model. For specifications 

with SAT-V as the dependent variable, the estimated coaching effect ranges from a low of 

0 points to a high of 69 points. For specifications with SAT-M as the dependent variable, 

the estimated coaching effect ranges from a low of 30 points, to a high of 80 points.  

 

Depending upon the selection function that is specified, the Heckman Model tells 

a different story about the nature of selection bias in SAT coaching. In models with SAT-

V as the dependent variable, the estimated correlation ρ̂  between δi and εi is -.60 and -.42 

for SF1 and SF2, but close to zero for SF4 and SF5. When SAT-M is the dependent 

variable, the estimated correlation is -.64 for SF1, but between -.36 and  

-.10 for SF2 through SF5. 

 

Only in the SF1 specification of the model is the parameter estimate for 

ˆ( , )ik i ikCOACH sλ  also statistically significant, indicating the presence of selection bias. 

For these (as well as most other) specifications, the estimated negative correlations 

between δi and εi would suggest that the students who are more likely to get coached are 

the ones who are less likely to perform well on a particular section of the SAT. If these 

versions of the Heckman Model are to be believed, it would indicate that any coaching 

effects estimated by the linear regression model will be biased downwards. On the other 
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hand, most specifications of the Heckman Model considered here suggest that any 

selection bias in the data is not statistically significant. 

 

Multicollinearity helps explain why coaching effect estimates vary so 

dramatically, with large standard errors, under different specifications of the Heckman 

Model selection function. In particular, the variable COACHi and ˆ( , )ik i ikCOACH sλ  are 

strongly correlated, which follows from the fact that the latter is defined as an interaction 

with the former. When the variables ˆ( , )ik i ikCOACH sλ  based on SF1 and SF2 are 

regressed on a constant, COACHi and Xi, the respective adjusted R2's are .98 and .97. 

Likewise, the regressions based on SF3, SF4 and SF5 have adjusted R2's of .92, .94 and 

.92.  

 

The easiest solution to the multicollinearity problem is to omit one or more 

covariates from the regression equation. But this is no real solution to the problem 

because the underlying behavioral model has now been violated—any decrease in 

multicollinearity will come with a potential increase in bias. Other solutions have been 

proposed and applied to handle collinear data without omitting variables (c.f. ridge 

regression and principal components analysis described in Greene, 1993, p. 270-273). A 

detailed discussion of these methods is outside the scope of this paper, but it is important 

to note that "solutions" to multicollinearity have their own associated problems. To the 

extent that such methods change the structure and relationship of the data under 

consideration, they will almost certainly change the causal interpretation of the Heckman 

Model as presented here. 
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Comparing Effect Estimates 

 

Figures 2 and 3 compare the SAT-V and SAT-M coaching effects estimated by 1) 

taking the unadjusted difference in average scores between coached and uncoached 

students, 2) using the five Heckman Model specifications and 3) using just linear 

regression with the covariates Xi (i.e., assuming that δi and εi are independent). I include 

around each point estimate the corresponding 95% confidence interval.  All parameters 

are estimated with the same design effect correction. 

 

Insert Figures 2 and 3 about here 

 

For the SAT-V, the linear regression model produces a statistically significant 

point estimates of about 11 points for the coaching effect. The Heckman Model produces 

effect estimates ranging from 0 to 70 points, only two of which (SF1 and SF2) are 

statistically significant. If the SF1 and SF2 specification of the Heckman Model are 

ignored, the SAT-V effect estimates from both models are smaller than what would be 

estimated by simply taking the average difference in SAT-V scores for coached and 

uncoached students. For the SAT-M, the Heckman Model produces coaching effect 

estimates ranging from 30 to 70 points—estimates that are generally more than twice as 

large as the 19 point estimate produced under linear regression. The SAT-M coaching 

effect estimates tend to be statistically significant under both models. Under the Heckman 

Model the estimates tend to be larger (SF 3 is the exception) than what would be 

estimated by simply taking the difference in the average SAT-M scores for coached and 

uncoached students, while under linear regression the estimate is smaller. 



Causal Inference and the Heckman Model 

30 

 

Unlike the Lalonde study, there is no absolute criterion against which to compare 

the coaching effects estimated by the Heckman Model. Only the Powers & Rock study 

has used the Heckman Model to estimate coaching effects. The covariates and predictors 

available in the Powers & Rock data, while not quite of the same quality as some of those 

available from NELS, were fairly similar. In their regression equation Powers & Rock 

included covariates for PSAT or first SAT scores, father's education, student high school 

GPA, math GPA, race/ethnicity and two measures of student motivation.11 Their 

selection function included all the same variables, and also included student's GPA in 

high school social science courses. This specification of the Heckman Model is probably 

most comparable to my SF2. Yet Powers & Rock's SAT-V coaching effect estimate (12 

points) produced using the Heckman Model was similar only to those produced under 

SF4 and SF5 with the NELS data; for the SAT-M their effect estimate (13 points) was 

generally less than a third of the NELS-based estimates. Powers & Rock also estimated 

standard errors that were on the whole much smaller than those found in the analysis of 

the NELS data, in part perhaps because their data structure did not require a design effect 

correction. 

 

Discussion 

 

The question of when causal inferences can be drawn in observational studies is a 

subject of perpetual debate. Much attention has been directed at the suitability of the 
                                                 
11 This information was not included in their published study of 1999, but was provided to me in a personal 

communication (Rock, 2002). 
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linear regression model for making claims of cause and effect (c.f. Berk, 2003; 

Freedman, 1995, 2002; Holland, 2001).  With respect to the behavioral model presented 

here, a key difference between linear regression and the Heckman Model is the relaxation 

of the independence assumption between the error terms in Equations 1 and 2. Another 

key assumption of the Heckman Model is bivariate normality for those error terms. If 

normality does not hold, then the Heckman Model as described here falls apart as a 

correction for the selection bias problem. Note that normality is a necessary condition for 

consistent estimation under the Heckman Model, but not for linear regression. If the 

linear regression error term is iid, if the error terms in Equations 1 and 2 are independent, 

and if confounding covariates are included in the model, then linear regression will 

produce unbiased causal effect estimates even when the distribution of the error term (εi) 

is non-normal. 

 

As a correction for the problem of selection bias, the Heckman Model is an 

intuitively appealing tool for estimating an unbiased effect of commercial coaching on 

SAT performance. That being said, I have shown that using a selection function specified 

just with the objective of identifying the model (e.g. SF1 and SF2), results in effect 

estimates from the Heckman Model that are substantially different than those estimated 

from a selection function specified on a slightly more theoretical basis (e.g. SF5). I have 

also shown that once a selection function has been specified, estimated, and used to 

calculate the Inverse Mills Ratio, a large degree of multicollinearity may serve to inflate 

standard error estimates. With access to the right software (e.g. STATA, LIMDEP), the 

Heckman Model is easily implemented with seemingly obvious causal conclusions.  This 
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paper suggests successfully application of the Heckman Model in social science research 

must hinge upon a compelling theoretical rationale and a careful scrutiny of the data.   

 

The results of the analysis of the NELS data here are consistent with the 

established notion that much caution must be exercised before applying the Heckman 

Model as a means of drawing causal inferences about a treatment effect. In the social 

sciences, bias in the estimated effects from any given study is very difficult to rule out, no 

matter how intuitively appealing the methodology. There is, unfortunately, no statistical 

silver bullet.  
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Table 1. Covariates by Coaching Status 
 

Name Description of Covariate Uncoached Coached Stat Sig  
(p value) 

     
PSAT-V PSAT-Verbal 422 (3.1) 427 (7.5) .31 
PSAT-M PSAT-Math 465 (3.6) 475 (8.2) .49 
AGE Age at time of NELS F2 survey 18 (.5) 18  (.4) <.01 
FEMALE Female % 56 58 .92 
 Race/Ethnicity %   .51 
AM_INDIAN      American Indian <1 <1  
ASIAN      Asian 6 9  
BLACK      Black 9 8  
HISPANIC      Hispanic 8 9  
WHITE      White 77 74  
 Type of School %   .24 
PUBLIC      Public 80 75  

     Catholic 13.2 16.7  PRIVATE      Other Private 7 9  
 Location of School %   <.01 
SCH_URB      Urban 36 47  
SCH_SUB      Suburban 43 44  
SCH_RUR      Rural 21 9  
SES SES Index .4 (.7) .7 (.8) <.01 
 SES Quartile %   <.01 
      Top Quartile 46 72  
      Second Quartile 29 17  
      Third Quartile 18 6  
      Bottom Quartile 8 5  
F1MATH F1 Math Test Std Score  57 (8.2) 58 (7.8) .54 
F1READ F1 Reading Test Std Score  57 (8.6) 56 (8.2) .78 
MTHCRD Units of Math taken in high school  4 (.8) 4 (.6) .53 
MTHGRD Weighted GPA in Math Courses 3 (.8) 3 (.8) .01 
 High School Program %   .18 
RIGHSP      Rigorous Academic  40 41  
      General 54 56  
 Other % 7 4  
RE_ENG Taken a remedial English course 6 9 .10 
RE_MATH Taken a remedial Math course 9 10 .58 
AP Taken an AP class 58 62 .27 
F1ESTEEM Self-Esteem Index .12 (.7) .18 (.6) .25 
F1LOCUS Locus of Control Index .20 (.6) .20 (.6) .99 
 Homework done outside school (hrs per week) %   .20 

     16 or more hours 11 16  HOMEWORK      10-15 hours 24 27  
      1-9 hours 58 53  
      <1 hour 7 5  
     
standard errors in parenthesis    
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Table 2. Extrinsic Motivation by Coaching Status 
 

Name Description of Covariate Uncoached Coached Stat Sig  
(p value) 

     
HWTUTOR Private tutor helped w/ homework in high school % 11 17 .02 
 Student discussed plan to prepare for SAT w parents%   <.01 
PPRESS     Often 20 45  
     Sometimes 55 36  
     Never 18 9  
 ....Missing Response 7 10  
PARENT Parents strongly encouraged student to prepare for SAT % 87 98 <.01 
HI_MOT Student scored below 1010 on PSAT, but has GPA > 3.25 11 22 <.01 
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Table 3. Selection Function Parameters Estimated using Probit Model 
 

 SF1 SF2 SF3 SF4 SF5 
Log Likelihood -1175.3 -1163.6 -1187.3 -1119.2 -1119.2 
dof 23 25 7 8 11 
Pseudo R2 .0994 .1084 .0902 .1424 .1423 
% sig covariates  13% (3/23) 20% (5/25) 86% (6/7) 100% (8/8) 72% (8/11) 
Variables in 
Selection Fcn 

ˆ ˆ,α γ  se ˆ ˆ,α γ  se ˆ ˆ,α γ  se ˆ ˆ,α γ  se ˆ ˆ,α γ  se 

Constant -3.984* 1.886 -4.712* 1.921 -2.115* .187 -2.146* .234 -4.202* 1.870 
PSAT-M -.0006 .0007 -.0006 .0007       
PSAT-V -.0004 .0006 -.0003 .0006       
AGE .142 .099 .142 .100     .112 .102 
SES .563* .091 .548* .091   .441* .078 .439* .079 
FEMALE .084 .096 .084 .096       
ASIAN .128 .153 .138 .154       
BLACK .078 .170 .097 .170       
HISPANIC -.031 .163 -.028 .166       
NATIVE -.326 .518 -.342 .518       
PRIVATE .058 .146 .061 .148       
SCH_RUR -.390* .116 -.374* .117   -.429* .124 -.416* .120 
SCH_URB .065 .159 .066 .159       
AP -.052 .142 -.049 .143       
RE_ENG .151 .200 .149 .199       
REMATH .300 .199 .307 .194   .471* .161   
RIG_HSP .093 .108 .092 .108       
F1READ .001 .008 .001 .008       
F1MATH -.010 .009 -.010 .009       
MTHCRD .143* .058 .139* .058   .138* .055   
MTHGRD .159 .113 .161 .113     .009 .057 
F1ESTEEM .114 .078 .117 .077       
F1LOCUS -.093 .093 -.097 .093       
HOMEWORK .006 .097 -.003 .097       
PARENTa   .695* .191 .702* .187   .602* .188 
MPARENTa   .745* .220 .721* .230   .688* .231 
PPRESSa     .677* .130 .652* .115 .628* .115 
MPPRESSa     .529* .145 .552* .149 .526* .143 
HWTUTORa     .459* .113 .333* .121 .334* .121 
MHWTUTORa     .560 .394   .592 .370 
HI_MOTa     .472* .233 .424* .210 .447* .205 
 
* p-value for two-sided t-test < .05  
N = 3,144 
a  These covariates are excluded from the regression equation 
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Table 4. SAT Coaching Effects using the Heckman Model 
 
 SAT-V SAT-M 
 COACHi ˆ( , )i i iCOACH sλ  ρ̂  of (δi, εi) COACHi ˆ( , )i i iCOACH sλ  ρ̂  of (δi, εi) 

SF1 69* (30) -32* (16) -.60 79* (30) -33* (17) -.64 
SF2 58* (26) -26 (14) -.42 59* (28) -22 (15) -.36 
SF3 0 (15) 7 (8) .15 30 (16) -6 (9) -.10 
SF4 17 (15) -3 (9) -.05 46* (16) -16 (9) -.25 
SF5 12 (15) -1 (8) -.01 42* (15) -13 (9) -.20 

 
N = 3,144 [effective sample size after design effect correction = 1,015]  
* p-value < .05 (based standard errors with design effect = 3) 
 
SF1 : Zi = all covariates in Xi  
SF2 : Zi = all covariates in Xi + 1 covariate (PARENT) not used in Xi  
SF3 : Zi = only covariates not in Xi (HWTUTOR, PARENT, PPRESS, HI_MOT) 
SF4 : Zi = covariates chosen by stepwise selection (SCH_RUR, PPRESS, HWTUTOR, REMATH, HI_MOT, 

SES, MTHCRD 
SF5 : Zi = covariates that were stat sig in coaching crosstabs (AGE, SES, MTHGRD, SCH_RUR, HWTUTOR, 

PARENT, PPRESS, HI_MOT) 
 
 

Figure 2. Comparison of SAT-V Coaching Effect Estimates 
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Figure 3. Comparison of SAT-M Coaching Effect Estimates 
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